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This paper introduces a nonlinear multigrid solution approach for the discrete
Boltzmann equation discretized by an implicit second-order Finite Difference
scheme. For simplicity we restrict the discussion to the stationary case.
A numerical example shows the drastically improved efficiency in comparison to
the widely used Lattice–Bathnagar–Gross–Krook (LBGK) approach.
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1. INTRODUCTION

For more than a decade an explicit numerical scheme for the discrete
Boltzmannequation, theso-calledLattice–Bathnagar–Gross–Krook(LBGK)
approach (1) has been used quite successfully to obtain approximate solu-
tions for weakly compressible and incompressible Navier–Stokes problems.
Although LBGK models have shown to be effective simulation tools for a
variety of such problems especially for the transient regime, the benefits
of state-of-the-art numerical techniques for the solution of the discrete
Boltzmann equation have not been sufficiently explored. A first step in this
direction is to decouple the spatial and temporal discretization by using
Finite Difference (2, 3)—or Finite Volume-based methods (4) on non-uniform
grids. Beside the possibility to utilize a Galerkin-based FD-solution approach(5)

one can furthermore obtain solutions by implicit schemes as described in. (6)

These have been successfully applied to high Reynolds-number flows with
moderate numbers of degrees of freedom (DOF). As an example for an



advanced numerical approach suitable for a huge number of DOF this
paper introduces a multigrid solution approach for the stationary discrete
Boltzmann equation.

2. ITERATIVE SOLUTION METHODS

Let

L(u)=F (1)

be a nonlinear equation system resulting from the discretization of a
(partial) differential equation. Basically all iterative numerical solution
schemes for Eq. (1) can be cast to the following form:

P
Dum

w
=−dm (2)

Here dm=L(um)−F is the so-called defect. The iteration error is the dif-
ference between the exact solution u. of the discrete equations and the
actual approximation um and will be simply referred to as the error in
the course of the discussion to follow and has to be distinguished from the
discretization error due to finite grid resolution. P is a suitable precondi-
tioner and w a relaxation parameter controlling the convergence behavior
of the scheme.

An improved solution is obtained from

um+1=um+Dum (3)

If J(m) is the Jacobian of L with respect to um:

J(m)=
“L (i)

“uj
(um) (4)

it can be shown, (7) that the iterative scheme converges to the solution u. if
the spectral radius r(M) of the amplification matrix M(m) given by

M(m) :=1−wP−1J(m) (5)

is smaller than unity for mQ.. The spectral radius r(M) of a matrix is
the largest eigenvalue l of M:

r(M)=max{|lj |, i=1,..., n} (6)
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The value limmQ. r(M(m)) is called the convergence rate of the iterative
scheme because it characterizes the asymptotic behavior of the iteration
error. In addition, we introduce a suitable norm characterizing the conver-
gence behavior of the error because fast solvers converge within a few
iterations and thus never show asymptotic behavior characterized by the
spectral radius. The spectral norm of a matrix M is defined as

||M||=`r(MTM) (7)

and is often referred to as the contraction number because it determines the
error reduction of the iterative process:

||um+1−u.|| [ ||M(m)|| ||um−u.|| (8)

3. THE MULTIGRID APPROACH

3.1. Motivation

For classical iteration techniques like Point–Jacobi or Point–Gauss–
Seidel the rate of convergence depends on the mesh resolution h:

r ’ 1−O(h2) (9)

Thus a fine mesh resolution results in a very slow convergence and the
number of iterations required to solve the system implies a huge computa-
tional effort for large equation systems. As the LBGK scheme can be iden-
tified as a Point–Jacobi-type scheme it shows the corresponding behavior
as will be demonstrated below.

The underlying reason for the weak convergence rate of standard
iterative schemes for large numbers of DOF becomes obvious when looking
at the evolution of the wavenumber spectrum of the error. For fine grids
damping of small wavenumbers is (in contrast to the large ones) very weak
so that a huge number of iterations is required until the (long wavelength
part of the) error amplitude is damped and convergence is reached. The
basic idea of a multigrid approach is to represent the low-frequency part of
the error on a coarser grid with a reduced number of DOF. After smooth-
ing or eliminating the error on the coarse grid, an improved solution is
transferred back to the fine grid where remaining high frequency parts of
the error are efficiently damped by additional fine grid iterations. The
transfer process from the fine grid to the coarse grid is the so-called
restriction, the opposite transfer is referred to as prolongation. Using a
multigrid scheme the number of iterations can be shown to become

A Multigrid-Solver for the Discrete Boltzmann Equation 575



independent of the number of unknowns provided that certain mathemati-
cal properties of the restriction and prolongation as well as the iterative
scheme itself are fulfilled.

3.2. The Basic Linear Multigrid Procedure

We now sketch a linear twogrid algorithm LTG for a system of linear
equations, resulting from the discretization of a partial differential equation
on the grid level l. The system is written in matrix form as

Llul=Fl (10)

Let u −l be an approximation for the exact solution ul of the discrete equa-
tions. On the fine grid we perform n1 smoothing steps using a smoothing
operator (S)l:

ūl=(S)
n1
l (u

−

l, Fl) (11)

Now the error

vl=ūl−ul (12)

is smooth. The exact correction vl can be computed as follows.

Ll(ūl−vl)=Fl (13)

Since the problem is linear, we have:

Llvl=Ll ūl−Fl=dl (14)

The solution of (14) is as difficult as the original problem (10). Since the
error is smooth, we can solve the problem on a coarser grid. The defect
dl=Ll ūl−Fl is transferred to the coarse grid via the restriction operator r,
which will be defined in Section 4.4:

dl−1=rdl (15)

The exact correction vl−1 on the coarse grid is computed with

Ll−1vl−1=dl−1 (16)
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where Ll−1 is the matrix representing the difference equations on grid level
l−1. The exact correction is then mapped back onto the fine grid using
a prolongation operator p, which will be defined in Section 4.4:

ûl=ūl−pvl−1 (17)

After the correction the error is not smooth anymore an we can perform n2
smoothing steps:

ũl=(S)
n2
l (ûl, Fl) (18)

In order for the convergence rate to be independent of the number of
DOF, the restriction and prolongation operator must obey certain con-
straints (8) (Section 4) and the operator (S)l must have the smoothing
property. (9) A single iteration step of the linear twogrid algorithm in
pseudo-code is thus given by

Algorithm 1. Linear twogrid algorithm LTG

Procedure LTG (integer l, array u, array F)
array d,v

u=(S)n1l (u, F) //pre-smoothing
d=r(Llu−F) //restriction of defect
v=L−1l−1d //exact correction
u=u−pv //prolongation of correction
u=(S)n2l (u, F) //post-smoothing

These twogrid-iterations are performed until a suitable norm of the
defect indicates convergence:

Algorithm 2. Outer twogrid loop

do
call LTG(l, ul, Fl) //Twogrid-iteration
d=Llu−F //defect
if (||d|| < eps) stop //stopping criterion

enddo

3.3. Extension to Multiple Grids

For a large number of DOF the computation of the exact correction
on the coarse grid is still cumbersome because the matrix to invert is still
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Fig. 1. V-cycle.

large. The idea is to compute an approximate solution on the coarse grid.
This approximate solution together with a new coarser grid is then used for
another twogrid-iteration. This approach is recursively repeated until the
coarsest grid allows an exact solution, leading to the so-called V-cycle of
the multigrid method (see Fig. 1).

This linear multigrid (LMG) algorithm exhibits a natural recursivity:

Algorithm 3. Linear multigrid algorithm LMG

procedure LMG (integer l, array u, array F)
array d, v

if (l==0) then

u=L−10 F //exact correction
else

u=(S)n1l (u, F) //pre-smoothing
d=r(Llu−F) //restriction of defect
v=0 //initialization of correction
call LMG(l−1, v, d) //recursive call of LMG
u=u−pv //prolongation of correction
u=(S)n2l (u, F) //post-smoothing

endif

Again these multigrid-iterations are performed applying Algorithm 2
where LTG is replaced by LMG until convergence.
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4. A MULTIGRID METHOD FOR THE DISCRETE

BOLTZMANN EQUATIONS

4.1. Discretization of the Stationary Discrete Boltzmann Equation

The differential equation to solve is given by the stationary discrete
Boltzmann equation using a BGK approximation for the collision operator
and the discretized velocity space of the so-called incompressible d2q9-
model: (1, 10)

ta ·
“fa
“x
+
1
y
(fa−f

(0)
a )=0 a=0,..., 8 (19)

with velocity vectors

(ta)a=0,..., 8=c R
0 1 0 −1 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1

S (20)

and equilibrium distributions

f (0)a =ta 3p+p0 1
taaua
c2s
+
uaub
2c2s
1taatab
c2s
−dab 224 (21)

Here t0=
4
9 , t1=t2=t3=t4=

1
9 , t5=t6=t7=t8=

1
36 , y is the relaxation

time and c is a parameter, which determines the speed of sound cs=`c
2

3
.

The value p0 is a reference pressure. Note that the summation convention is
used with respect to Greek letters only, defining, e.g., taaua=;2

a=1 taaua. It
can be shown (10) that for small Mach numbers the moments given by

p=C
a
fa p0u=C

a
tafa (22)

are solutions of the incompressible stationary Navier–Stokes equation

N ·u=0 (23)

u ·Nu=−
c2s
p0

Np+nN2u (24)

if the kinematic viscosity is related to the microscopic relaxation time by
n=y

3 c
2. The LBGK approach is to discretize Eq. (19) by

fa(x+Dtta, t+Dt)−fa(x, t)=−
Dt
y
(fa(x, t)−f

(0)
a (x, t)) a=0,..., 8

(25)
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where ea=ta/c are the discrete lattice vectors. For this approach the order
of the scheme can be improved by identifying the viscosity as n=2y−Dt

6 c
2.

The discretization for the multigrid approach uses a second order
upwind FD scheme in the flow domain and a first order scheme at the first
layer from the the boundaries. The Finite Differences are build along the
characteristics of the system.

First order upwind differences yield

c
Dx
(fa(xi, yj)−fa(xi−Dxea1, yj−Dxea2))=ta ·

“fa
“x
+O(Dx) (26)

and second order upwind differences give

c
Dx
13
2
fa(xi, yj)−2fa(xi−Dxea1, yj−Dxea2)

+
1
2
fa(xi−2Dxea1, yj−2Dxea2)2=ta ·

“fa
“x
+O(Dx2) (27)

The resulting difference equations are

fa(i, j)−fa(i−ea1, j−ea2)+
Dx
cy
(fa(i, j)−f

(0)
a (i, j))=0 (28)

and

3fa(i, j)−4fa(i−ea1, j−ea2)+fa(i−2ea1, j−2ea2)

+
2Dx
cy
(fa(i, j)−f

(0)
a (i, j))=0

(29)

where f(i, j) :=f(xi, yj) and f(i−ea1, j−ea2) :=f(xi−Dxea1, yj−Dxea2).
Dirichlet boundary conditions for the velocity field can be set as follows:
For every distribution fa pointing out of the computational grid and
for f0, Eq. (28) can be applied, whereas for the other distributions the
modified bounce-back scheme of Ladd (11, 12) is used. This defines the values
for 8 of 9 distributions. One additional equation can be obtained by linear
extrapolation of the pressure. An example is given in Section 5.

4.2. The Nonlinear Multigrid Extension

As the discretized Boltzmann equations are nonlinear, we choose a
corresponding nonlinear multigrid extension based on, (13) to solve the
nonlinear equation system

Ll(ul)=Fl (30)

resulting from Eqs. (28), (29), and the corresponding boundary conditions.
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Let Ll be the nonlinear operator with respect to a given grid level and
u −l be an approximate solution for Eq. (30). As in the linear case we
perform n1 smoothing steps using the smoothing operator (S)l to obtain ūl
and a smooth error vl. The exact correction vl is then

Ll(ūl−vl)=Fl (31)

which is to be approximately computed by the coarse grid correction. Since
the problem is nonlinear, we write

Ll(ūl−vl)−Ll(ūl)=Fl−Ll(ūl)=−dl (32)

Now the problem is transferred to the coarse grid using the restriction
operator r:

Ll−1(ul−1)−Ll−1(rūl)=−rdl (33)

Equation (33) can be written as:

Ll−1(ul−1)=Ll−1(rūl)−rdl=Fl−1 (34)

In contrast to the linear scheme one solves (34) for ul−1 and not just for the
correction vl−1. After Solving (34), the coarse grid correction vl−1 can be
computed with

vl−1=rūl−ul−1 (35)

The correction is now transferred back to the fine grid using the prolongation
operator p

v̂l=pvl−1 (36)

Now we can correct the solution ūl with

ûl=ūl−v̂l (37)

and then perform n2 post-smoothing steps using (18).
Using Taylor expansion around ūl in Eq. (32), the desired exact

correction can be written as

vl=L
−1
l (ūl) dl+O(||vl ||

2) (38)
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where Ll(ūl) is the Jacobian at the point ūl. Using Taylor expansion,
Eq. (36) can be written as

v̂l :=pL
−1
l−1(rūl) rdl+O(||rdl ||

2) (39)

Comparison of the desired correction (38) and the computed correction
(39) shows that vl % v̂l, if the terms of second order are small (indicating
that a good start vector is needed) and vl is smooth.

The nonlinear multigrid algorithm can be written as:

Algorithm 4. Nonlinear multigrid algorithm NMG

procedure NMG (integer l, array u, array F)
array Fc,uc

if (l==0) then

u=L−10 F //exact solution
else
u=(S)n1l (u, F) //pre-smoothing
Fc=Ll−1(ru)−r(Ll(u)−F) //right hand side of the coarse grid
uc=ru //initialization of coarse grid solution
call NMG(l−1, uc, Fc) //recursive call of NMG
u=u+p(uc−ru) //prolongation of correction
u=(S)n2l (u, F) //post-smoothing

endif

4.3. Computing the Start Vector by Nested Iteration

As discussed in Section 4.2 the nonlinear multigrid approach requires
a good initial solution to work efficiently. Such a start vector can be obtained
by a so-called nested iteration. The idea is to compute an exact solution on
the coarsest grid which is then successively interpolated on the finer grids
where this initial solution is improved by one or more multigrid iterations.
In Fig. 2 the algorithm is sketched. The interpolated solution on each grid
is improved by one multigrid iteration.

Solve Solve Solve Solve

R R

R

S S S S S

SSS

S

S

S

S
R

R

RP P

P P

P

P

P

P

P

coarsest grid

finest grid

Fig. 2. Nested iteration.
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The corresponding pseudo-code reads:

Algorithm 5. Nested iteration

ũ0=L−1
0 (F0)

do k=1, l
ũk=p̃ũk−1
do j=1, niter

call NMG(k, ũk, Fk)
enddo

enddo

4.4. Prolongation and Restriction

Prolongation is based on bilinear interpolation including values on
the boundaries of the computational domain. For the restriction ‘‘full
weighting’’ (9) is used. In stencil notation (17) these operators can be written
as:

[p]=r
1
4
1
2
1
4

1
2 1

1
2

1
4
1
2
1
4

s [r]=r
1
16
1
8
1
16

1
8
1
4
1
8

1
16
1
8
1
16

s

4.5. Smoother

We use a collective Gauss–Seidel-smoother. (17) At each grid node (i, j)
for the nine variables fa(i, j) a local Newton–Raphson procedure is used to
solve the 9×9 equation system while keeping the other variables fixed. In
one smoothing operation we use four Gauss–Seidel-iterations with different
orderings: Forward, backward, forward vertical line and backward vertical
line. (17)

4.6. Measure of MG Efficiency

The efficiency of a multigrid iteration can (in absence of an analytical
solution) be evaluated using an appropriate norm of the defect. Each
smoothing and correction step should result in a reduction of this norm.
The contraction number zj defined as

||d j+1|| [ zj ||d j|| (40)
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is a good measure for the error reduction after an iteration. For well-posed
problems the spectral norm (7) and the contraction number (40) should
behave in a similar manner.

For a given problem several multigrid iterations may be necessary.
Accordingly, an averaged contraction number can be defined as

z̄=
1
m

C
m

j=1
zj (41)

where m is the number of iterations.

5. NUMERICAL EXAMPLE: CAVITY FLOW

As a numerical example we show results for a lid driven cavity flow
for a Reynolds number Re=u0L

n =10 obtained by the LBGK approach as
well as the multigrid scheme. The problem is depicted in Fig. 3.

The boundary conditions for the upper boundary of this problem are
set as discussed in Section 4.1.

1
cy
(f0(i, n)−f

(0)
0 (i, n))=0 (42)

f2(i, n)−f2(i, n−1)+
Dx
cy
(f2(i, n)−f

(0)
2 (i, n))=0 (43)

f5(i, n)−f5(i−1, n−1)+
Dx
cy
(f5(i, n)−f

(0)
5 (i, n))=0 (44)

f6(i, n)−f6(i+1, n−1)+
Dx
cy
(f6(i, n)−f

(0)
6 (i, n))=0 (45)

f2(i, n)−f4(i, n)=0 (46)

f1(i, n)−f3(i, n)−
2
3
p0u0
c
=0 (47)

f7(i, n)−f5(i, n)+
2
12
p0u0
c
=0 (48)

f8(i, n)−f6(i, n)−
2
12
p0u0
c
=0 (49)

C
a
fa(i, n)−2 C

a
fa(i, n−1)+C

a
fa(i, n−2)=0 (50)
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u=0

u=0

Lu=0

u = u0

L
Fig. 3. Setup of the driven cavity problem.

Equations (42)–(45) are the difference Eq. (28). Equations (46)–(49) are
the Bounce–Back scheme of Ladd (11, 12) to obtain the desired velocity at the
boundary. Equation (50) is the linear extrapolation of the pressure. Note
that in contrast to LBGK we can lower the BC velocity error down to
machine precision by decreasing the maximum iteration error of the
equation solver.

The other boundary conditions are imposed in an equivalent way.

5.1. Error Due to Finite Grid Resolution

The root mean square error E2 of the velocity field due to finite grid
resolution can be computed with the following formula

E2=
`; (u1−u0)2

`; u02
(51)

where u0 is the reference solution and u1 is the solution under consideration.
We have computed the stationary flow field for grid resolutions

Dx=2−l ·L both with the LBGK (l={5,..., 9}) and the Multigrid
approach (l={5,..., 11}). The root mean square error E2 is computed for
both methods, whereas in lack of an analytical solution we use the 513×513
grid-solution (LBGK) as the reference solution for the LBGK-Method
and the 2049×2049 grid-solution (MG) as the reference solution for the
MG-Method. The values for E2 and the error reduction for the grid
refinement are listed in Table I. For both schemes the convergence rate for
the grid refinement can be interpreted as follows: Both schemes are of
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Table I. Relative Velocity Error

Grid resolution 332 652 1292 2572 5132 10252

E2MG 0.07131 0.03530 0.01342 0.00402 0.00108 0.00028
Error Red. – 2.02 2.63 3.34 3.71 3.91

E2LBGK 0.12664 0.06225 0.02240 0.00677 – –
Error Red. – 2.04 2.77 3.31 – –

second order in space except near the boundary, where we have a first
order scheme.

The pressure fields for a resolution of 257×257 nodes are shown in
Fig. 4 for the two approaches and are practically indistinguishable.

For this low Reynolds number the interesting part of the solution is
not really the position of the main vortex (which coincides for both the
LBGK and the multigrid solution to within 2% with reference values given
in ref. 15) but the resolution of the secondary vortices at the lower left and
right corner of the system. In the corners a self-similar sequence of counter-
rotating vortices can be predicted analytically. (14) In Fig. 5a–b the secon-
dary vortices are shown both for the multigrid and the LBGK solution.
The position of the vortex center is almost identical. The form of the vor-
tices can be compared to the self-similar solution (see Fig. 5c) to which the
LBGK solution shows the closest resemblance.

5.2. Computational Effort

The multigrid computation was done using V-cycles with no pre-
smoothing and one post-smoothing per iteration, since this setup was the
most effective. Note that the prolongation and restriction is a very cheap
operation in contrast to the smoothing operation, where the solution of
small systems of equation is needed. The initial solution was obtained by
the nested iteration described above. The iteration was stopped, when the
Euclidean norm of the defect was less than 1.0E-10. Table II shows the cell
Reynolds number Rec=

Uh
n and the mean value of the contraction number z̄

computed in the Euclidean norm. One can see that for the present problem
the number of iterations is not only constant (indicating no dependence on
the number of unknowns), but even decreasing with the grid size, i.e., the
number of unknowns, which is due to the decreasing cell Reynolds number.

While the results of the two simulation methods show reasonable
agreement, a closer inspection of the effort to obtain the solutions reveals
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Fig. 4. Isolines for the pressure far field: multigrid- and LBGK-solution.
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Fig. 5. Lower left vortex: Multigrid-, LBGK-, analytical self-similar solution.

588 Tölke et al.



Table II. Contraction Number vs. Grid Size for Re=10

Grid resolution 332 652 1292 2572 5132 10252 20492

Rec
10
32

10
64

10
128

10
256

10
512

10
1024

10
2048

z̄ 0.50 0.47 0.44 0.41 0.40 0.39 0.37
#Iterations 21 20 19 18 17 17 16

the expected differences. As can be seen in Fig. 6, for finer grids the
multigrid approach is substantially faster (for the 1025×1025 and the
2049×2049 grids the LBGK solution times could not even be computed
and have been extrapolated from those of the smaller grids).

Although the above results were presented for low Reynolds number
flow the nonlinear MG scheme is not restricted to this regime. This can be
seen from simulations using a 65 × 65 grid for the driven cavity flow for
various Reynolds numbers (see Table III). The start vector was obtained
from nested iteration as described above and the iteration was based on
V-cycles with no pre- and one post-smoothing step.

From the contraction number it can be seen that the convergence rate
decreases for higher Reynolds numbers but still implies a substantial gain
in efficiency in comparison to the LBGK scheme.
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Fig. 6. Comparison of computational efforts for the DC problem using MG and LBGK.
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Table III. Contraction Number vs. Reynolds-Number on a 65×65 Grid

Reynolds number Re 1.0 10.0 100.0 1000.0

Cell Reynolds number Rec
1
64

10
64

100
64

1000
64

Averaged contraction number z̄ 0.0031 0.47 0.89 0.98

6. DISCUSSION

The multigrid-solver works efficiently for flows with low and moderate
Reynolds numbers. For problems with high Reynolds-numbers further
work is required. One approach to improve the efficiency is to use an
ordering of grid-points which is related to the local direction of streamlines.
This ordering, also called downwind numbering, is constructed using
graph-theory. (16)

The procedure outlined here uses prolongation and restriction on a
geometrical basis, so the mapping from one level to another is only possible
for geometries of moderate complexity. For geometries of very high
complexity the so-called algebraic multigrid method (18) is promising.
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